aiagent.AgentRetrievalQA

class AgentRetrievalQA(*, memory: Optional[BaseMemory] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = None, tags: Optional[List[str]] = None, combine_documents_chain: BaseCombineDocumentsChain, input_key: str = 'query', output_key: str = 'result', return_source_documents: bool = False, retriever: BaseRetriever)
__init__(**kwargs: Any) None

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

Methods

__init__(**kwargs)

Create a new model by parsing and validating input data from keyword arguments.

acall(inputs[, return_only_outputs, ...])

Run the logic of this chain and add to output if desired.

apply(input_list[, callbacks])

Call the chain on all inputs in the list.

arun(*args[, callbacks, tags])

Run the chain as text in, text out or multiple variables, text out.

construct([_fields_set])

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.

copy(*[, include, exclude, update, deep])

Duplicate a model, optionally choose which fields to include, exclude and change.

dict(**kwargs)

Return dictionary representation of chain.

from_chain_type(llm[, chain_type, ...])

Load chain from chain type.

from_llm(llm[, prompt])

Initialize from LLM.

from_orm(obj)

json(*[, include, exclude, by_alias, ...])

Generate a JSON representation of the model, include and exclude arguments as per dict().

parse_file(path, *[, content_type, ...])

parse_obj(obj)

parse_raw(b, *[, content_type, encoding, ...])

prep_inputs(inputs)

Validate and prep inputs.

prep_outputs(inputs, outputs[, ...])

Validate and prep outputs.

raise_deprecation(values)

Raise deprecation warning if callback_manager is used.

run(*args[, callbacks, tags])

Run the chain as text in, text out or multiple variables, text out.

save(file_path)

Save the chain.

schema([by_alias, ref_template])

schema_json(*[, by_alias, ref_template])

set_verbose(verbose)

If verbose is None, set it.

to_json()

to_json_not_implemented()

update_forward_refs(**localns)

Try to update ForwardRefs on fields based on this Model, globalns and localns.

validate(value)

Attributes

input_keys

Return the input keys.

lc_attributes

Return a list of attribute names that should be included in the serialized kwargs.

lc_namespace

Return the namespace of the langchain object.

lc_secrets

Return a map of constructor argument names to secret ids.

lc_serializable

Return whether or not the class is serializable.

output_keys

Return the output keys.

retriever